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1 Sums of Fredholm and Compact Operators and The Toeplitz
Index Theorem

1.1 Fredholm plus compact is Fredholm

Last time, we proved the Riesz-Fredholm theorem, which says that if T € L£(B,B) is
compact, then 1+ 7T is a Fredholm operator with ind(1 +7") = 0.

Proposition 1.1. An operator T € L(By, Ba) is Fredholm if and only if there exists a map
S € L(By, By) such that TS — 1 and ST — 1 are compact on Ba and By, respectively.

Proof. (<=): Let S € L(By, B1) be such that ST =1+ K; and T'S = 1 + K>, where K;
is compact on Bj for j = 1,2. Then ker T" C ker(1+ K1), so ker T" is finite-dimensional. On
the other hand, im 7 D im(1 + K3): Let Y C Bj be such that dim Y = dim coker(1 + K3),
so Bo=im(1+ Ko)®dY. If Y =imTNY,s0Y =Y @Yo, then By =imT @ Ys. So we
get dim coker 7' = dim Y3 < dimY = dim coker(1 + K3) < co.

( = ): We follow the Grushin approach: If n; = dimkerT and n_ = dimcoker T,
then there exist an injective R_ : C"~ — Bs and a surjective Ry : By — C"+ such that
the Grushin operator

T R_
— . n_— n4
P_[R+ 0}.B1€B(C — By C

is invertible with inverse

| E By
£ = [ E_ E_J .
Moreover,
_ _|R R_||EF FEy| |TE4+R_E_ x
1_P8_{R+ 0}{E_ E__J_[ * *]’
soTE+ R_FE_=1on By, where R_FE_ has finite rank. Similarly, using 1 = EP, we get
ET —1=—-F,R,, where E4 R has finite rank on B;. O



Remark 1.1. If S € £(Bs, B;) is such that ST — 1 and 7'S — 1 are compact, then S is
Fredholm, and ind(ST) = 0. The logarithmic law gives ind(ST') = ind S +ind T', so we get
indS =—indT.

Theorem 1.1 (Fredholm theory). Let T' € L(Bj1, Ba) be Fredholm, and let S € L(B1, Ba)
be compact. Then T + S is Fredholm, and ind(T' + S) = ind T

Proof. Let E € L(Bs, By) be such that TE—1, ET —1 are compact. Then (T+S)E—1 and
S(T+S)—1 are compact, so T+ is Fredholm. Moreover, ind(T'+S) = ind(T'+tS) = ind T
for all t € [0, 1]. O

1.2 The Toeplitz index theorem
Here is a nice example of a Fredholm operator.

Example 1.1. Consider L2g(0, 2m)) = L3(R/27Z). If u € L?((0,27)) and the Fourier
coefficients are u(n) = 5 [5" w(f)e ™ df, then u(f) ~ 3., u(n)e™’. Consider the
Hardy space H = {u € L? : u(n) = 0 for n < 0}, which is a closed subspace of L?((0, 27)).
The associated orthogonal projection 7 : L? — H sends >, ., u(n)e™? — 3" t(n)e™.
Let f € L°°((0,27)). Associated to f is the Toeplitz operator Top(f) : H — H given

by Top(f)u = m(fu). Then Top(f) € L(H, H), and || Top(f)|lz(a,r) < [1floo-

Theorem 1.2 (Toeplitz index theorem). If f € C(R/27Z) is nonvanishing, then Top(f)
is Fredholm on H, and ind Top(f) = —winding number(f).

To define the winding number, write f(6) = r(0)e™?), where r > 0 and r,¢ are

continuous on [0, 27]. Then the winding number of f is w.

Proof. To prove the Fredholm property of Top(f), we will try to invert Top(f) with a
compact error. We claim that if f,g € C(R/2nZ), then Top(f) Top(f) = Top(fg) + K,
where K is compact. Write Top(f) = wMy and Top(f) = wM,, where M means a
multiplication operator. Then

MM, = (7 My + [My, 7)) My = 72 M, + 7[My, 7|M, = Top(fg) + K,

where [My, 7] = Mym — wM; is the commutator L? — L? and K = w[My, 7|My. To show
that K is compact, it suffices to show that [My, ] is compact on L.
Case 1: If f(0) = ¢, with n € Z, then
[M meﬂ']eike — (62'119 O — T O ein@)eike

e

If n >0,



where the latter expression = 0 if k < —n. So [M_ine, 7] is of finite rank on L.
We will finish the proof next time.
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